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Abstract 
This work presents a comparative experimental analysis of different first-order stochastic optimization algo-

rithms for image registration in spatial domain: stochastic gradient descent, Momentum, Nesterov momentum, 
Adagrad, RMSprop, Adam. Correlation coefficient is considered as the objective function. Experiments are per-
formed on synthetic data generated via wave model with different noise-to-signal ratio and real-world images. 
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1. Introduction 
Image registration is referred to as a process by 

which the most accurate match is determined between 
two images, which may have been taken at the same or 
different times, by the same or different sensors, from 
the same or different viewpoints. The goal of the regis-
tration process is to determine the optimal transfor-
mation, which will align the two images. This has ap-
plications in many fields as diverse as medical image 
analysis, pattern matching, and computer vision for ro-
botics, as well as remotely sensed data processing. In 
all of these domains, image registration can be used to 
find changes in images taken at different times, or for 
object recognition and tracking. 

Spatial domain methods operate directly on pixels, 
and the problem of the estimation of registration param-
eters α̅ becomes the problem of searching for the ex-
treme point of a multi-dimensional objective function 
J(𝐙, α̅). The objective function measures the similarity 
between two images Z(1) = {𝑧�̅�

(1)} and Z(2) = {𝑧�̅�
(2)}, 

where 𝑗̅ ∈ Ω are nodes of grid mesh Ω on which the im-
ages are defined. There is a wide variety of similarity 
measures that can be used as objective functions [1]. 
The decision of which objective function to choose is 
usually based on the specifics of images, deformation 
properties and conditions. Recently, objective func-
tions from the theory of information are becoming more 
popular. Among these functions the most interesting is 
mutual information. It has been found to be especially 
robust for multimodal image registration and registra-
tion of images with great non-linear intensity distortion 
[2]. However, mutual information has some drawbacks. 
One of them is relatively high computational complex-
ity. 

The choice of optimization search technique de-
pends on the type of problem under consideration. Tra-
ditional nonlinear programming methods, such as the 

constrained conjugate gradient, or the standard back 
propagation in neural network applications, are well 
suited to deterministic optimization problems with ex-
act knowledge of the gradient of the objective function. 
Optimization algorithms have been developed for a sto-
chastic setting where randomness is introduced either 
in the noisy measurements of the objective function and 
its gradient, or in the computation of the gradient ap-
proximation. Stochastic gradient ascend (descend) is 
one of the most powerful technique of this class [3]. It 
is an iterative algorithm, where registration parameters 
can be found as follows [4]: 

α̂̅𝑡 = α̂̅𝑡−1 − 𝚲𝑡β̅𝑡( J(𝑍𝑡, α̅𝑡−1)), 
where β̅ – gradient estimation vector of the objec-

tive function J obtained using not each pixel in the im-
ages but a sample 𝑍𝑡 taken randomly on each iteration, 
𝚲𝑡– positive-definite gain (learning rate) matrix: 𝚲𝑡 =
‖λ𝑖𝑡‖, λ𝑖𝑡 > 0, 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ; 𝑚 – the number of registration 
parameters. 

The main disadvantage of this optimization algo-
rithm is presence of a large number of local extreme 
points of the objective function due to the use of small 
samples and relatively short working range in terms of 
registration parameters to be estimated. To overcome 
these problems the number of sample elements can be 
increased. However, this leads to significant increase in 
computational efforts. Another significant problem is 
choosing the hyperparameter 𝚲𝑡 as it largely affects not 
only the convergence rate but also the estimation accu-
racy. Thus, the problem of optimization of stochastic 
gradient algorithm for image registration is an im-
portant, especially for real-time processing systems. To 
overcome the mentioned problems some modifications 
of the “classical” stochastic gradient descent have been 
proposed. This paper is devoted to comparative experi-
mental analysis of these modifications: Momentum, 
Nesterov momentum, Adagrad, RMSprop, Adam. 
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These algorithms are very effective, especially in train-
ing artificial neural networks [5]. 

2. Stochastic optimization algorithms 
Let us consider the most popular modifications of 

stochastic gradient descent optimization algorithm 
which can be used for solving image registration prob-
lem. 

2.1. Momentum 
The idea behind Momentum optimization is quite 

simple [6]: if one imagine a bowling ball rolling down 
a gentle slope on a smooth surface: it will start out 
slowly, but it will quickly pick up momentum until it 
eventually reaches terminal velocity (if there is some 
friction or air resistance). In contrast, regular gradient 
descent will simply take small regular steps down the 
slope, so it will take much more time to reach the bot-
tom. Recall that gradient descent simply updates the pa-
rameter estimates α̂̅ by directly subtracting the gradient 
of the cost function with regards to the parameters 
J(𝐙, α̅) multiplied by the learning rate λ > 0. It does not 
care about what the earlier gradients were. If the local 
gradient is tiny, it goes very slowly. Momentum opti-
mization cares a great deal about what previous gradi-
ents were: at each iteration, it adds the local gradient to 
the momentum vector m̅ multiplied by the learning 
rate λ, and it updates the weights by simply subtracting 
this momentum vector. In other words, the gradient is 
used as an acceleration, not as a speed. To simulate 
some sort of friction mechanism and prevent the mo-
mentum from growing too large, the algorithm intro-
duces a new hyperparameter ℎ, simply called the mo-
mentum, which must be set between 0 (high friction) 
and 1 (no friction). A typical momentum value is 0.9. 
Thus, the equation for parameter estimate updates can 
be written as follows: 

α̂̅𝑡 = α̂̅𝑡−1 − m̅𝑡, 
where m̅𝑡 = ℎm̅𝑡−1 + 𝚲𝑡β̅𝑡( J(𝑍𝑡, α̅𝑡−1)). 
One can easily verify that if the gradient remains 

constant, the terminal velocity (i.e. the maximum size 
of the weight updates) is equal to that gradient multi-
plied by the learning rate 𝜆 multiplied by 1

1−ℎ
. For ex-

ample, if ℎ = 0.9, then the terminal velocity is equal to 
10 times the gradient times the learning rate, so Mo-
mentum optimization ends up going 10 times faster 
than “classical” stochastic gradient descent. This al-
lows Momentum optimization to escape from plateaus 
much faster. 

2.2. Nesterov momentum 
In [7] the author proposes one small variant to Mo-

mentum optimization which is almost always faster 
than vanilla Momentum optimization. The idea behind 
Nesterov momentum optimization consists in measur-
ing the gradient of the cost function not at the local po-
sition but slightly ahead in the direction of the momen-
tum. Hence, the only difference from vanilla Momen-
tum optimization is that the gradient is measured on 𝑡-
th iteration at the point α̂̅𝑡−1 + ℎm̅𝑡 rather than at α̂̅𝑡−1: 

α̂̅𝑡 = α̂̅𝑡−1 − (ℎm̅𝑡−1 + 𝚲𝑡β̅𝑡( J(𝑍𝑡, α̂̅𝑡−1 + ℎm̅𝑡))). 
This small tweak works because in general the 

momentum vector will be pointing in the right direction 
(i.e., toward the optimum), thus it will be slightly more 
accurate to use the gradient measured a bit farther in 

that direction rather than using the gradient at the orig-
inal position. Figure 1 shows this effect. Here λβ1 rep-
resents the gradient of the cost function measured at the 
starting point α̂̅𝑡−1, and λβ2 represents the gradient at 
the point located at α̂̅𝑡−1 + ℎm̅𝑡. As one can see, the 
Nesterov update ends up faster optimizers slightly 
closer to the optimum. After a while, these small im-
provements add up and the procedure ends up being 
significantly faster than regular Momentum optimiza-
tion. Moreover, we should note that when the momen-
tum pushes the weights across a valley, λβ1 continues 
to push further across the valley, while λβ2 pushes back 
toward the bottom of the valley. This helps reduce os-
cillations and thus converges faster. 

 
Figure 1. Difference between Momentum and 

Nesterov momentum optimization. 
 

2.3. Adagrad 
If we consider the elongated bowl problem again: 

gradient descent starts by quickly going down the 
steepest slope, then slowly goes down the bottom of the 
valley. However, it would be better if the algorithm 
could detect this early on and correct its direction to 
point a bit more toward the global optimum. 

The Adagrad algorithm [8] achieves this by scal-
ing down the gradient vector along the steepest dimen-
sions: 

α̂̅𝑡 = α̂̅𝑡−1 − 𝚲𝑡β̅𝑡( J(𝑍𝑡, α̂̅𝑡−1))//(c̅𝑡 + ε)1 2⁄ , 
where c̅𝑡 = c̅𝑡−1 + β̅𝑡( J(𝑍𝑡, α̂̅𝑡−1))2

. 
The first step of this algorithm on each iteration is 

accumulating the square of the gradients into the vector 
c̅𝑡. If the cost function is steep along the 𝑖-th dimension, 
then c𝑖𝑡 will get larger and larger at each iteration. The 
second step is almost identical to “classical” stochastic 
gradient descent, but with one big difference: the gra-
dient vector is scaled down by a factor of (c̅𝑡 + ε)1 2⁄  
(the // symbol represents the element-wise division, 
and ε is a smoothing term to avoid division by zero, 
typically set to 10–8). In short, this algorithm decays the 
learning rate, but it does so faster for steep dimensions 
than for dimensions with gentler slopes. This is called 
an adaptive learning rate. It helps point the resulting up-
dates more directly toward the global optimum. One 
additional benefit is that it requires much less tuning of 
the learning rate hyperparameter. 

λβ1 

λβ2 

λβ1 

λβ2 

m

J
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Adagrad often performs well for simple quadratic 

problems, but unfortunately it often stops too early 
when training neural networks. The learning rate gets 
scaled down so much that the algorithm ends up stop-
ping entirely before reaching the global optimum. 

2.4. RMSprop 
Although Adagrad slows down a bit too fast and 

ends up never converging to the global optimum, the 
RMSProp algorithm [9] fixes this by accumulating only 
the gradients from the most recent iterations (as op-
posed to all the gradients since the beginning of train-
ing). It does so by using exponential decay in the first 
step: 

c̅𝑡
𝑟 = 𝑑c̅𝑡−1

𝑟 + (1 − 𝑑)β̅𝑡( J(𝑍𝑡, α̂̅𝑡−1))2
, 

where 𝑑 is the decay rate and it is typically set to 
0.9. 

Except on very simple problems, this optimizer al-
most always performs much better than Adagrad. It 
also generally performs better than Momentum optimi-
zation and Nesterov momentum. In fact, it was the pre-
ferred optimization algorithm of many researchers until 
Adam optimization came around. 
2.5. Adam 

Adam [10] which stands for adaptive moment es-
timation, combines the ideas of Momentum optimiza-
tion and RMSProp: just like Momentum optimization it 
keeps track of an exponentially decaying average of 
past gradients, and just like RMSProp it keeps track of 
an exponentially decaying average of past squared gra-
dients: 

α̂̅𝑡 = α̂̅𝑡−1 − 𝚲𝑡m̅𝑡
𝐴//(c̅𝑡

𝐴 + ε)1 2⁄
, 

m̅𝑡
𝐴 = 𝑑1m̅𝑡−1

𝐴 +(1−𝑑1)β̅𝑡( J(𝑍𝑡,α̂̅𝑡−1))
1−𝑑1

, 

c̅𝑡
𝐴 = 𝑑2c̅𝑡−1

𝐴 +(1−𝑑2)β̅𝑡( J(𝑍𝑡,α̂̅𝑡−1))2

1−𝑑2
. 

One can notice the similarity of Adam update rule 
to both Momentum optimization and RMSProp. The 
only difference is that it computes an exponentially de-
caying average rather than an exponentially decaying 
sum for m̅𝑡

𝐴 and c̅𝑡
𝐴, but these are actually equivalent 

except for a constant factor as the decaying average is 
just (1 − 𝑑1) and 1 − 𝑑2 times the decaying sum re-
spectively. The momentum decay hyperparameter 𝑑1 is 
typically initialized to 0.9, while the scaling decay hy-
perparameter 𝑑2 is often initialized to 0.999. As earlier, 
the smoothing term ε is usually initialized to a tiny 
number such as 10–8. In fact, since Adam is an adaptive 
learning rate algorithm like both Adagrad and 
RMSProp, it requires less tuning of the learning rate 
hyperparameter 𝚲𝑡. 
 

3. Experiments and analysis 
3.1. Synthetic data 
For efficiency analysis of differentit optimization 

algorithms it is reasonable to use simulated images 

whose intensity probability distribution function and 
correlation function can be priori defined during their 
synthesis. In conducted experiments simulated images 
based on wave model [11] with intensity probability 
distribution function and correlation function close to 
Gaussian and with different correlation radius were 
used. In addition, an unbiased Gaussian noise was used 
in simulations. Figure 2 shows an example of such syn-
thesized image. 

In order to measure the performance of the optimi-
zation algorithms we tested them on images with dif-
ferent noise-to-signal ratio and with different 𝜇 ‒ the 
number of points in the sample using for estimation of 
the gradient of the chosen objective function. Correla-
tion coefficient [1] is chosen as an objective function to 
be optimized. Similarity model is considered as the de-
formation model to be estimated. For all of the below 
results the deformation parameters are the following: 
horizontal shift ‒ 20 pixels to the right, vertical shift ‒ 
15 pixels upwards, clockwise rotation ‒ 17 degrees, 
scale factor – 0.9. In each experiment, optimal hyperpa-
rameters were chosen experimentally as different algo-
rithms better perform with different hyperparameters 
and their choice is out of the scope of this article. 

The number of iterations before convergence of 
mismatch Euclidean distance [4] 𝐸 which is an integral 
measure of registration parameters’ convergence is 
used as the performance criterion. Moreover, all the re-
sults are averaged by 50 realizations to make them more 
consistent and reproducible. In addition, result stability 
is analyzed using final error distributions. 

 

 
Figure 2. The image synthesized using wave model. 

 
3.1.1. Different sample size. Figure 3 shows the 

convergence of mismatch Euclidean distance for the al-
gorithms with different sample size 𝜇. Hereafter, curve 
1 corresponds to “classical” stochastic gradient de-
scent, 2 ‒ stochastic gradient descent with Momentum, 
3 – Nesterov momentum (plus markers), 4 – Adagrad 
(plus markers), 5 – RMSprop (dashed line), 6 – Adam 
(dashed line). 
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a) 𝜇 = 5  b) 𝜇 = 20 

Figure 3. Mismatch Euclidean distance on the number of iterations for different sample size. 
 

 

 

 
a) 𝜇 = 5  b) 𝜇 = 20 

Figure 4. Mean and standard deviation of final mismatch Euclidean distance. 
 
One can see that in both cases “classical” stochas-

tic gradient descent shows the worst result as it starts to 
converge only after 800 iterations for 𝜇 = 5 and after 
700 iterations for 𝜇 = 20. Momentum optimization al-
gorithm performs almost identically but slightly better 
for 𝜇 = 20. The best results in both cases are provided 
by Adam and RMSprop optimizations as they start to 
converge after 300 iterations for 𝜇 = 5 and after 200 
iterations for 𝜇 = 20. Moreover, it is obvious that 
Adam algorithm in both situations has less variance 
then RMSprop, thus we can conclude that it is more sta-
ble and hence preferable. Adagrad and Nesterov mo-
mentum algorithms show close results in terms of num-
ber of iterations before convergence (500 iterations for 
𝜇 = 5 and after 450 iterations for 𝜇 = 20), but in the 
beginning Adagrad has much faster convergence rate 
and with some optimization (e.g. increasing or drop-
ping learning rates after a number of iterations) it pos-
sibly can outperform Nesterov momentum. 

Figure 4 shows mean and standard deviation of fi-
nal mismatch Euclidean distance. One can see that the 
behaviour of the final error for every algorithm corre-
sponds to the behaviour of their convergence curves. 

Also, we can conclude that all of the algorithms 
have better convergence rate with bigger sample size. 
It is reasonable from theoretical point of view because 
the objective function gradient estimates become less 
noisy. 

 
3.1.2. Images with different signal-to-noise ratio. 

Let us test the algorithms in case of noisy images with 
different signal-to-noise ratio 𝑞. In this experiment we 
were using the sample size 𝜇 = 5 for each algorithm 
and 𝑞. Figure 5 shows the convergence of algorithms 
for 𝑞 = 50 and 𝑞 = 2. 

 

  
a) 𝑞 = 50 b) 𝑞 = 2 

Figure 5. Mismatch Euclidean distance on the number of iterations for different signal-to-noise ratio. 
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As in the previous experiment, “classical” stochas-

tic gradient descent shows the slowest convergence rate 
in both set-ups. Adam and RMSprop algorithms have 
the best result. For 𝑞 = 50 their curves are almost iden-
tical but when the noise increases Adam has much 
faster convergence rate in the beginning, hence it can 
potentially show better result. In addition, we can no-
tice that with very intense noise (𝑞 = 2) Adagrad con-
verges with bigger error in comparison with other algo-
rithms and it performs almost the same as “classical” 
stochastic gradient descent. In order to reduce the error, 
we can choose smaller learning rates. However, with 
smaller rate sometimes it was not able to converge at 
all. 

Additionally, it is clear that noise affects not only 
the convergence rate but also the variance of estimates 
for all of the algorithms as the curves become less 
smooth. 

 
3.2. Real data 

Satellite images were used for the comparative 
analysis on real data. Figure 6 shows an example of the 
images taken in different weather conditions. 

Figure 7 shows an example of mismatch Euclidean 
distance convergence of the algorithms for images 
shown in figure 6 and figure 8 demonstrates mean and 
standard deviation of final mismatch Euclidean dis-
tance. For this experiment 𝜇 was set to 25 and the re-
sults were averaged by 100 realizations as they became 
noisier in comparison with synthesized images, espe-
cially for the algorithms with adaptive learning rates. 

One can easily notice that the results on real data 
are almost identical to the results on synthesized im-
ages. Again, Adam and RMSprop algorithms are the 
fastest in terms of convergence rate. However here we 
can see the algorithms with adaptive learning rates have 
much noisier curves that the others. It can be explained 
by the fact that when dealing with real images we have 
noisier gradient estimation, thus in these algorithms the 
learning rate estimation becomes less stable. 

  
Figure 6. An example of real satellite images which were used for the comparative analysis. 

 

 
Figure 7. Mismatch Euclidean distance on the number of iterations for real images. 
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Figure 8. Mean and standard deviation of final mismatch Euclidean distance in case of real images. 

 
4. Conclusion 
The comparative analysis of different optimiza-

tion algorithms for solving image registration problem 
in spatial domain shows that in each case “classical” 
stochastic gradient descent shows the worst result in 
terms of the convergence rate of registration parame-
ters’ estimates. Momentum optimization algorithm just 
slightly outperforms it. Adagrad and Nesterov momen-
tum algorithms show close results in terms of number 
of iterations before convergence but except for the sit-
uation with intense noise Adagrad in the beginning has 
much faster convergence rate and with some optimiza-
tion (e.g. increasing or dropping learning rates after a 
number of iterations) it possibly can outperform 
Nesterov momentum The best results are provided by 
Adam and RMSprop optimizations Moreover, it is ob-
vious that Adam algorithm is almost always preferable 
as it has less variance then RMSprop. 

Furthermore, we can conclude that all of the algo-
rithms have better convergence rate with bigger sample 
size. It is reasonable from theoretical point of view be-
cause the objective function gradient estimates become 
less noisy. Additionally, it is clear that noise affects not 
only the convergence rate but also the variance of esti-
mates for all of the algorithms as the curves become 
less smooth. 

Experiments on real satellite images show mostly 
identical results. 
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